
Using a Formal Approach for Reverse Engineering and Design

Recovery to Support Software Reuse

Final Report

Gerald C. Gannod, Ph.D.
Principle Investigator

Period Covered: 10/01/2001 - 09/30/2002

Arizona State Unive_ity
Office of Research & Creative Studies

Box 871603

Tempe, AZ85287-1603

Grant No. NAG-I-2241

Introduction

This document describes 3 rd year accomplishments and summarizes overall project

accomplishments. Included as attachments are all published papers from year three.

Note that the budget for this project was discontinued after year two, but that a residual

budget from year two allowed minimal continuance into year three.

2 Third Year Accomplishments

2.1 Initial Investigations into Log-File Based Reverse Engineering.

Phase 3 of the project was to involve the investigation of approaches for integrating

formal and informal approaches for reverse engineering in order to support software

reuse. While the third year budget was cut, we were able to use year 2 residuals to

begin investigations in this area. Specifically, we began looking at an approach for

combining the use of informal information such as log-file traces and structural diagrams

with formal approaches such as model checking.

Software reverse engineering is defined to be a process of analyzing software

components and their interrelationships in order obtain a description of the software at a

high-level of abstraction. Approaches for reverse engineering have been suggested

that address the reverse engineering problem from a wide variety of views ranging from

structural makeup to observable behaviors using a wide variety of techniques covering

both static and dynamic analysis.

A common activity that occurs within the software development community is the use of

log files to generate traces of observed software behavior. Several different

approaches for creating log files exist including the use of compiler directives at the time

of development and post-development instrumentation.

As a resource for reverse engineering, a log file has the advantage of being an accurate

account of software behavior. However, a disadvantage is that the log file potentially

provides only a subset of possible behaviors of the software. As a result, to mitigate the

risk of using log files as a source of information for whatever reason, approaches such

as adequate testing are needed to ensure that a log file trace provides a reasonable or

adequate amount of behavioral coverage.

Model checking approaches work by using exploration to determine whether certain

temporal and safety conditions exist within the state space of some state-based model.

Model checking, using tools such as Spin and SMV, has gained much attention recently

due to many factors including the fact that it is relatively lightweight when compared to

other formal approaches such as theorem proving. In this phase, we initiated

investigations on approaches to reverse engineering that combine the use of model

checking and log file analysis to reconstruct software architectures for the purpose of

both understanding behavior and facilitating architecture level reuse.

2.2 Service-Based reuse.

During Phase 3 we also continued our investigations into the use of service-based

software reuse as a means for implementing systems once individual components have

been reverse engineered. Specifically, we developed approaches for achieving

integration at run-time using adapted legacy components.

Service-based technologies are mechanisms whereby access to information and

behavior is no longer constrained by traditional company and organizational boundaries.

Web Services, for instance, employ broker-based middleware that use internet

protocols such as HTTP and XML, allowing information and data to be provided by

service providers and consumed by clients over the internet. A service-based

development paradigm, or services model, is one in which components are viewed as

services. In this model, services can interact with one another and be providers or

consumers of data and behavior. Applications built within this paradigm dynamically

integrate services at runtime based on available resources which facilitates the creation

of a federation of services (e.g., new "super-services") that can evolve over time.

Some of the defining characteristics of service-based technologies include modularity,

availability, description, implementation-independence, and publication. In the service-

based development paradigm, a primary focus is upon the definition of the interface

needed to access a service (description) while hiding the details of its implementation

(implementation-independence). Since the client and service are decoupled, other

concerns such as side effects become non-factors (modularity). One of the potential

benefits of using a service-based approach for developing software is that at any given

time, a wide variety of alternatives may be available that meet the needs of a given

client (availability). As a result, any or all of the services may be integrated with a client

at run-time (published).

This phase of the work involved the development of an architecture-based approach for

the creation of services and their subsequent integration with service-requesting client

applications. The technique utilizes an architecture description language to describe

services and achieves run-time integration using current middleware technology. The

approach itself is based on a proxy model whereby the "glue" code for both services

and applications that make use of the services is automatically generated. The Jini

interconnection technology is used as a broker for facilitating service registration,

lookup, and integration at runtime.

3 Tools

Source to XML generator. As an add-on to previous tools, we developed a translator

that converts an intermediate format into an XML-based representation called GXL.

Further tools were planned that would have used this representation to implement

formal specification generators from source code.

4

+

Deviations

Modified scope due to budget cut. The scope was significantly modified due to the

elimination of the third year budget. Specifically, we were unable to complete tool

construction, which would have provided a seamless environment for discovery of

interfaces, adaption of components, and integration. This impacted primarily our

ability to create sophisticated search capabilities.

s Third Year Papers Published

[1] "Automated Support for Service-Based Software Development and Integration",
(with Sudhakiran V. Mudiam and Timothy E. Lindquist), submitted to the Journal of
Systems and Software - Special Issue on Automated Component-Based Software
Engineering, Oct. 2002.

[2] "Using Log Files to Reconstruct State-Based Software Architectures", (with Shilpa
Murthy), WCRE'02 Workshop on Software Architecture Reconstruction, September
2002.

[3] *"A Novel Service-Based Paradigm for Dynamic Component Integration", (with
Sudhakiran V. Mudiam and Timothy E. Lindquist), in the AAAI-02 Workshop on

Intelligent Service Integration, July 2002

6 Project Activities and Results

6.1 Project Activities

The following is a listing of all of the investigations that occurred during the funding
period.

1. Service-Based Software Reuse

a. Component Wrapping

b. System Integration

2. Alternative Approaches to Reverse Engineering

a. Graph-Based Approaches (Component Reuse)

b. Log-File Based Approach (Architecture Reuse)

3. Tool Development

a. Reverse Engineering Tools

i. Component Wrapping Tools

ii. Reverse Engineering Tools

1. Dependency Graph Generator

2. Code parser and Visual Browser

3. C to XML Code Generator

6.2 Findings

The primary contribution of this research was the recognition of a move towards

service-based software development approaches. Recent introduction of technologies

such as .NET are an indication of the emergence of such work. The research

performed under this grant directly addressed service-based issues from the standpoint

of legacy system and component integration. Specifically, our work was aimed at

providing infrastructures that support discovery and specification of components in order

to support eventual reuse and integration of those components into new applications.

6.3 Second Year Results

6.3.] Tool Development

During the second year of the project, construction of a preliminary version of the

reverse engineering support tool was completed and supports the following features:

• Analysis of ANSI C programs

• Construction of graphical representations of source code

• Clustering of graph based representations of source code using a number of

criteria

The tool development was partitioned into two separate projects. The first involved the

development of a parser for the C program language. The second involved the

development of a graphical user interface as well as the appropriate clustering routines.

6.3.1.1 Parsing

The parsing project involved the creation of a Java based parsing system that can be

used to support the construction of reverse engineering tools and facilitate analysis of C

source code modules. The parsing system was created using Metamata's parser

generator JavaCC, JJTree (JavaCC's associated tree building tool), and the modified

JavaCC provided C language grammar [1]. In addition, a second intermediate

representation was developed that grouped language constructs in a manner similar to

the grammar [3,4]. This was done to help provide for easier analysis, traversal, and

display of the C Source by the reverse engineering tool. The parser system can be built

using the tools and files given below. Once the parser is built, it can be used to parse

input C source text files. Output generated by the parser will be two object files

corresponding to the Abstract Syntax Tree for the source code and the Statement Class

Hierarchy Representation (described further below and in API documentation for this

module). These files are saved to disk with the names <SourceFile>.ast and <

SourceFile >.stm, where < SourceFile >.c is the file being parsed.

6.3.1.2 InterfaceandAnalysis

The analysis project involved the creation of a Java based reverse engineering system

that can be used for the analysis of C source code modules. Based on a second

intermediate representation generated by a JavaCC-based parser system, the reverse

engineering system provides graphic multi-views for easier analysis, traversal and

display of the C source codes. The system includes a source code browser, call graph

viewer and global graph analyzer (with clustering capabilities). The graphical user

interface was developed using Java/Swing components.

The system provides four patterns for clustering components within the global graph:

1.Clustering by file: the set of functions contained in the same source file are

grouped together into one cluster.

2.Clustering by support library: software systems may use a number of functions

that are accessed by the majority of its subsystems. This pattern groups

such functions together into one subsystem.

3.Clustering by central dispatcher: systems commonly contain a small number of

resources with a large out-degree. An example is a driver function that

calls many other functions.

4.Clustering by Subgraph: This pattern looks for a particular type of subgraph in

the system's graph.

6.3.2 Papers Published

The following sections describe a pair of papers that were published as a result of the

sponsored project.

6.3.2.1 An Investigationinto theConnectivityPropertiesof Source-HeaderDependency
Graphs

The task of understanding, modifying, and maintaining large systems can be

intimidating and frustrating, especially in environments where staff turnover rates are

high. The cognitive models used to tackle these tasks consist of top-down, bottom-up

and hybrid techniques. Bottom-up approaches focus on the object of study with the

perspective that direct source code analysis leads to formation of behavioral and

structural abstractions. Top-down approaches focus on successive refinements of

candidate designs with verification and validation of recovered designs against the

implemented software artifacts. Hybrid approaches use a combination of both top-down

and bottom up techniques in order to support a vertical analysis of a system.

Software artifacts are often organized at several different levels of discernible

abstraction including files, procedures, and blocks. Each of these levels of abstraction

present challenges to the maintainer. At the level of a file, the goal of the maintainer is

to generate a high-level, informal model. At the level of a function and procedure, a

maintainer is interested in constructing detailed structural models as well as determining

the intended and actual behavior of the source code.

A modularization is a partitioning of a software system into components based on a

variety of criteria, each depending on the approach and level of abstraction. Recent

approaches have investigated the effectiveness of traditional clustering techniques and

genetic algorithms for modularization at the file level of abstraction.

A source-header dependency graph is a bipartite graph that is formed by flattening

include file dependencies and enumerating source file to header file dependencies. In

this paper, we describe an approach for identifying candidate modularizations of

software systems by analyzing connectivity properties of source-header dependency

graphs. These modularizations provide information that can lead to coarse-grained

reuse of source code and are a perfect complement to our earlier work.

6.3.2.2 A Suite of Tools for Facilitating Reverse Engineering Using Formal Methods

It is well-known that the maintenance of software is one of the most costly aspects of

software development. As a program evolves, it becomes increasingly difficult to

understand and reason about changes to source code. Eventually, if several changes

to software are made without a corresponding modification of the software

documentation, reverse engineering and design recovery techniques must be used in

order to understand the current behavior of a system. Software reverse engineering is

defined as the process of analyzing a subject system in order to identify components

and component interrelationships and to create representations of that system in other

forms or at other levels of abstraction. Several approaches to reverse engineering and

design recovery have been suggested and include techniques for deriving structural

abstractions and identifying plans embedded in code.

In our previous investigations, we described a formal technique for reverse engineering

that involves two phases. The first phase constructs low-level, as-built specifications

from program code. The specifications recovered from this phase are considered to be

as-built since they describe a system as it was implemented rather than how the system

was designed. The second phase of our investigations into reverse engineering

involves the derivation of high-level abstractions from as-built specifications. By

constructing high-level abstractions, several activities are facilitated, including high-level

reasoning, program understanding, and software reuse.

One of the attractive properties of formal methods is that formal languages with well-

defined syntax and semantics facilitate the construction and use of automated support

tools. In addition, since manual application of formal techniques can be prone to errors,

automated support is desirable. The size of non-trivial programs ranges from the tens

of thousands to perhaps even millions of lines of code. Given the combined context of

formal methods and program analysis, the construction of automated support tools is

well-motivated. In this paper, we describe the development of several tools that have

been designed to support a formal approach for reverse engineering. Much of this work

was based on previous work that served as the precursor to the project funded under

this grant.

6.4 First Year Results

6.4.] Development of a Reverse Engineering Support Tool

Our primary efforts during the funding period have been directed towards the

construction of a support tool for deriving formal specifications from program code.

Specifically, we have defined requirements for the support tool, performed several

design activities, and have commenced development. The purpose of this tool is to

support two complementary reverse engineering activities. That is, the tool will support

the construction of both informal and formal specifications from source code.

The informal component of the tool is intended to support techniques for generating

graphical specifications of programs including the construction of data flow diagrams

and call graphs using approaches such as Software Reflexion [5]. The formal

component of the tool will support the approach developed by the PI for generating

strongest postcondition specifications from program code [3].

The context for the reverse engineering support tool is shown in Figure 1, where an

input program is analyzed by the tool along with assistance from the analyst to produce

an output specification. The output specification can take many forms including a formal

specification or an informal specification (e.g., diagrams). The analyst (user) can

provide information at various points in the analysis via modification of source code

annotations during formal analysis or by guiding the encapsulation/abstraction process

during informal analysis.

Code_Brov_. _ Slbructural_Analysts SourceCodePr__ Library

Figure 2 High-Level Architecture

User _ A2000S°Ur_

Feedback _

Input and

Output Files

Figure l A2000 Context Diagram

The high-level architecture of the A2000 reverse engineering system is shown in Figure

2, where the system is decomposed using a layered architectural style. The user-

interface component provides the interaction point with the user and the file

management system represents an interface to a mechanism for managing input and

output files. The primary challenges for constructing the support tool lies in the

development of the Source Code Processor, Structural Analysis, and Logical Analysis

components. Each of these components embodies the heart of the reverse engineering

system as they are used to for front-end and back-end processing of source code.

6.4.2 An Architectural Based Approach for Synthesizing Wrappers

In software organizations there is a very real possibility that a commitment to existing

assets will require migration of legacy software towards new environments that use

modern technology. One technique that has been suggested for facilitating the

Figure 3 Specification of Legacy Component using AcmeStudio

migration of existing legacy assets to new platforms is via the use of the adapter design

pattern, also known as component wrapping. We developed an approach for facilitating

the integration of legacy software into new applications using component wrapping.

That is, we demonstrate the use of a software architecture description language as a

means for specifying various properties that can be used to assist in the construction of

wrappers. In addition, we show how these wrapped components can be used within a

distributed object infrastructure as services that are dynamically integrated at run-time.

This work provides a complementary approach to the one to be supported by the work

described in Section 1.1 for constructing software repositories that can be subsequently

searched using formal and informal techniques. Specifically, the wrapping technique

can be used to adapt and store existing components in libraries. The approach

supports the use of the Jini interconnection technology and is supported by a tool that

has been constructed using the AcmeLib toolkit [2]. Figure 3 depicts a session of the

Acme Studio tool [1] that depicts the graphical specification of a legacy RCS component

with two ports called Chkln and ChkOut, which correspond to the programs "ci" and

"co", respectively. By specifying these legacy programs as ports to a component, use

of several programs as federated services is facilitated. In addition, by using a

specification medium such as Acme, legacy components can integrated into the

specification of new software architectures, thus achieving a form of software reuse.

7 Project Publications

[1] "Automated Support for Service-Based Software Development and Integration",

(with Sudhakiran V. Mudiam and Timothy E. Lindquist), submitted to the Journal of
Systems and Software - Special Issue on Automated Component-Based Software

Engineering, Oct. 2002.

[2] "Using Log Files to Reconstruct State-Based Software Architectures", (with Shilpa

Murthy), WCRE'02 Workshop on Software Architecture Reconstruction, September
2002.

[3] *"A Novel Service-Based Paradigm for Dynamic Component Integration", (with
Sudhakiran V. Mudiam and Timothy E. Lindquist), in the AAAI-02 Workshop on

Intelligent Service Integration, July 2002

[4] "An Investigation into the Connectivity Properties of Source-Header Dependency

Graphs", Gerald C. Gannod and Barbara D. Gannod, to appear in Proceedings of

the 8th Working Conference on Reverse Engineering, October 2001.

[5] "A Suite of Tools for Facilitating Reverse Engineering Using Formal Methods ,"
Gerald C. Gannod and Betty H.C. Cheng, in Proceedings of the 9th International

Workshop on Program Comprehension, May 2001.

[6] "An Architecture-Based Approach for Synthesizing and Integrating Adapters for

Legacy Software", G.C. Gannod, S.V. Mudiam, and T.E. Lindquist, in the

Proceedings of the seventh IEEE Working Conference on Reverse Engineering,
2000.

ASSOCIATED PUBLICATIONS

A Novel Service-Based Paradigm for Dynamic Component Integration

Sudhakiran V. Mudiam and Gerald C. Gannod* + Timothy E. Lindquist
Dept. of Computer Science & Engineering Dept. of Elect & Comp Engg Technology

Arizona State University Arizona State University - East

Box 875406 7001 E. Williams Field Road, Building 50

Tempe, AZ 85287-5406 Mesa, AZ 85212

E-mail: {kiranmvs, gannod}@asu, edu E-mail: tim@asu, edu

Abstract

We are developing a novel service-based paradigm
for dynamic component integration that facilitates
the creation of Intelligent Services from COTS
(Commercial Off The Shelf) components, legacy
components, and application frameworks by us-
ing techniques such as mediation and adaption or
"wrapping". This framework supports the con-
struction of applications by dynamically integrat-

ing these services at run-time based on available
resources and allows for a federation of services

that can evolve over time. As a part of the ongo-
ing research effort we are utilizing an architecture

based specification language that enables us to au-
tomate the process of creating these intelligent ser-
vices.

Introduction

In the past, software reuse, and especially Component

Based Software Engineering (CBSE) have been in the

spotlight as various component technologies have ma-

tured. CBSE is much more than simply using object

request brokers, setting up a library of useful code,

or modular development. It involves building, ac-

quiring, assembling and evolving systems. Tradition-

ally, in CBSE technologies, several components are

packaged together to create software systems. Emerg-

ing concerns include multiple suppliers of components

that provide the same functionality, coping with mul-

tiple versions, and configuration of components. Cur-

rently, CBSE addresses issues and technologies such

as Commercial-Off-The-Shelf(COTS) components, in-

built components, and application frameworks. Emerg-

ing technologies of component integration include, En-

terprise Java Beans (Thomas 1998), CORBA (Obj

1996), Jini (Richards 1999), Microsoft's DNA(Kirtland

1999), DCOM(Eddon & Eddon 1998) and IBM's San

Francisco (Monday, Carey, & Dangler 1999). All these

"Contact Author.

tThis author supported in part by NSF CAREER Grant
CCR-0133956.

Copyright (_) 2002, American Association for Artificial Intel-
ligence (www.aaai.org). All rights reserved.

technologies provide a component model where a pre-

defined infrastructure acts as "plumbing" that facili-

tates communication between components. Tools and

environments supporting these technologies are being

widely used in the industry and continue to provide

many benefits.

We are developing a novel service-based paradigm

for dynamic component integration that facilitates the

creation of Intelligent Services from COTS (Commer-

cial Off The Shelf) components, legacy components,

and application frameworks by using techniques such

as mediation and adaption or "wrapping". This frame-

work supports the construction of applications by dy-

namically integrating these services at run-time based
on available resources and allows for a federation of ser-

vices that can evolve over time. As a part of the ongo-

ing research effort we are utilizing an architecture based

specification language that enables us to automate the

process of creating these intelligent services (Gannod,

Mudiam, & Lindquist 2000).

The remainder of this paper is organized as follows.

The next section introduces our approach for applica-

tion construction based on the use of intelligent ser-

vices. An example using the approach is described in
the following section, and the balance of the paper dis-

cusses related work, conclusions and future investiga-
tions.

A New Paradigm

We are developing an approach based on a new

paradigm that looks at software reuse from a different
perspective in which components are viewed as services

available on a network. In this paradigm, components
are dynamically composed into federations to make up
an application (Mudiam 2000). The key features of our

approach within this paradigm are:

• Components of varying granularity are bundled as

"intelligent services" and made available on a net-
work.

• The paradigm provides an integration framework, or
middleware, that allows for the dynamic integration

of these components (bundled as intelligent services)
at run-time.

• The paradigm facilitates the use of various patterns of
interaction (architectural styles) between clients and
intelligent services.

• The intelligent services provide a clear set of inter-
faces that are discovered dynamically at run-time and
achieved using filters and adapters.

The process of component integration consists of the
following steps.

1. Specification of the components as services.

2. Generation of the services along with the appropriate
adapters and storing them to a repository.

3. Specification of a client to make use of services from
the repository.

4. Generation of the client.

5. Execution of the client, performs the integration of
the specified services at runtime.

Steps 1 and 2 are typically performed only once for
each service while Steps 3 through 5 are performed as
needed for each application. One of the primary goals
of this work is the use of automatic synthesis to gen-
erate the source code necessary to achieve service in-
tegration. Our preliminary investigations have yielded
an approach for generating wrappers of legacy applica-
tions for use as services (Gannod, Mudiam, & Lindquist
2000). In this work, a specification of a legacy software
is created that defines the interface to a potential ser-
vice. Second, the appropriate adapter source code is
then synthesized based on the specification.

In order to specify how applications are to be inte-
grated, we use the ACME architecture description lan-
guage (ADL) (Garlan, Monroe, & Wile 1997) to de-
scribe both the available services as well as the client

components that utilize those services. These specifi-
cations capture the interface of the components in such
a way that the services can be regarded as black-boxes
while remaining loosely coupled from implementation
details.

Once the services are generated and stored in a repos-
itory, clients can make use of these services by identi-
fying a general class of service that is required and the
architectural style is necessary to properly interact with
a client. This work addresses several issues that need to

be considered during application specification and con-
struction including:

• The specification of application architectures

• The specification of a component type in order to
manage style interactions

• Graphical user interface integration including the use
of shared graphical features

Again, using the ACME ADL, an application ar-
chitecture is specified in order to describe the client
composition and to identify the service classes that are
needed by the application. Using this specification, the
source code necessary to realize integration is generated

(but is not bound to specific services). The remaining
source code for the client, as with all applications, is
provided by the user.

Integration of all services in our paradigm is per-
formed with the execution of clients as each service be-

comes available. At first a client registers with a lookup
service. Once services become available and join the
network, the client is notified. The client integrates with
the services by performing the GUI component integra-
tion as well as the service adapter integration and uti-
lizes the service,

The research described above makes use of

Jini (Richards 1999) technology to realize service in-
tegration. The components are wrapped as Jini services
and we make use of the discovery and join mechanism
to enable services join a Jini network.

Example
Figures 1 and 2 depict specifications of a client compo-
nent and a number of services, respectively. In this ex-
ample, the client consists of an editor that needs to uti-
lize version management, printing, and compiling ser-
vices. When the client runs, it joins the Jini network
using Jini's discover and join protocol. As shown in the
specification in Figure 1, the services that are required
by the client are described as ports to which services
will be bound.

Component Editor = {

Properties {

Part-of-client :

string = "true";

GUI-CodeFile :

string = "ClientGUICode.java";

Component-type :

string = "Call Return";

};
Port VM_Port = {

Properties (

Port-type :

string = "caller"; };

);
Port COMPILING_PORT = {

Properties {

Port-type :

string = "caller";);

};
Port PRINTING_PORT = {

Properties (

Port-type :

string = "caller"; };

); };

Figure h Client Specification

The specifications of the services, as shown in Fig-
ure 2, describe each of the available services in the in-
tegration network. In this example we show only the
specification of the RCS service and provide stubs for
other services. Note that the other services would in-

deed be specified in the same manner as the RCS ser-
vice. Each of the port specifications in a service com-

ponent describe associated services. As such, the RCS

service could potentially have sub-services for check in
and check out.

Component RCS = {

Properties (

Component-type :

string = "Call Return";

};
Port ChkIn = (

Properties (

Signature :

string = "String filename,

String params, String filedata ";

Return :

string = "Boolean result";

Cmd :

string = "ci + filename + params";

Pre :

string =

"WriteFileData(filedata,filename)";

Post :

string = ""-,

Interface :

string = "VersionManagement";

Path :

string = "C:\\RKTOOLS\\BIN\\CI.EXE ";

Port-type :

string = "callee";

];);];
Component LzDr = {

Properties {

Component-type :

string = "Call Return";

];
Port Print = (

Properties {

}; }; };
Component Javac = {

Properties {

Component-type :

string = "Call Return";

};

Port Compile = {

Properties {

}; }; };

Figure 2: Services Specification

Initially, when no services are available, the client

only has its editing GUI component as shown in Fig-
ure 3. However, since the client has access to the list

of services that it needs, it utilizes the lookup services

on the Jini network in order to complete service integra-

tion. As each service comes up and joins the Jini net-

work, the client learns its existence and integrates them

into the client. The Figure 4 shows the result of the in-

tegration once all the services have joined the network.

In this example, we have a version management ser-

vice called the RCSService, a compiling service called

JavacService and a printing service called IzprService.

Edttor l_lndew.,

Figure 3: Initial Client

Related Work

Sullivan et al. look at systematic reuse of large-scale

software components via static component integra-

tion (Sullivan et al. 1997). That is, they use an

OLE-based approach for component integration. To

demonstrate the use of their scheme, they developed a

safety analysis tool that integrates application compo-

nents such as Visio and Word. In our approach we use a

dynamic approach for component integration and thus,

can utilize a wide variety of components whose inter-

faces are discovered at run-time.

CyberDesk (Dey et al. 1997) is a component-based

framework written in Java that supports automatic inte-

gration of desktop and network services. This frame-

work is flexible and can be easily customized and ex-

tended. The components in this framework treat all data

uniformly regardless of whether the data came from a

locally running service or the World Wide Web. The

goal of this framework is to provide ubiquitous access

to services. This approach is similar to our proposed

approach in that they use a dynamic mapping facility to

support run-time discovery of interfaces.

Conclusions

The availability of components on a network that pro-

vide services at run-time has many potential applica-

tions including the use of heterogeneous components

executing in distributed environments. Enabling tech-

nologies such as Jini allow for dynamic component

integration. We have described an architecture-based

methodology of building components for reuse, and

later using them with in a larger context to build ap-

plications.

We are currently building an environment for sup-

porting the specification and synthesis of applications

that utilize services through dynamic integration. The

current state of this work includes tools for sythesizing

both service and client integration code. We have used

these tools to generate examples including the one de-

scribed in this paper. Our future investigations include

developing an approach for dynamically generating me-

diators to facilitate service interactions that bypass the

need to communicate via client applications.

References

Dey, A. K.; Abowd, G.; Pinkerton, M.; and Wood,

A. 1997. Cyberdesk: A framework for providing

Clus Ite11_,_rld(
publlc stttt¢ votd_stn($_rtn|[] _rgs)(

System.out. prt nt !n('Hell _ rld ")

J ... J

I¢l*ss _ellov_r1_ i

i' error i

IStntus |rife rlldt4 phi . : -

cwa_'tlNI _* 'I_@)IWsT', *ltell)_
coMectea tO '11_-_II_1l:"
r_questln| prl#ter _leci)h_ _ _

)n 'r**tSlocalhost*lH¢" l_ tn !p_!ecnl_omt railed !
error '_H_qUtG _11_ _ CC_E IrllOIqSLOWERVlth iCK '_ i
sending s_r 'N_pn' to li_BIKnlhosl

error rag: 'si_ol _ flr '1t_0' dees not exist on server
error ling: ' nen-exnstnt prl_er or you need to run 'che

........................... i

... .T .

Figure 4: Client After Integration

self-integrating ubiquitous software services. Techni-
cal Report GIT-GVU-97-10, Georgia Tech.

Eddon, G., and Eddon, H. 1998. Inside Distributed
COM. Microsoft Press.

Gannod, G. C.; Mudiam, S. V.; and Lindquist, T. E.
2000. An architecture-based approach for synthesiz-
ing and integrating adapters for legacy software. In
Seventh Working Conference in Reverse Engineering,
128-137. IEEE Computer Society.

Garlan, D.; Monroe, R. T.; and Wile, D. 1997. Acme:
An Architecture Description Interchange Language. In
Proceedings of CASCON'97, 169-183.

Kirtland, M. 1999. Designing Component-BasedAp-
plications: Build Enterprise Solutions with Microsoft
Windows DNA. Microsoft Press.

Monday, P.; Carey, J.; and Dangler, M. 1999. San-
Francisco Component Framework: An Introduction.
Addison-Wesley.

Mudiam, S. V. 2000. A novel service based paradigm
for dynamic component integration. Ph.D. Proposal,
Arizona State University.

Object Manangement Group. 1996. CORBA: Archi-
tecture and Specification V2.0, formal/97-02-25 edi-
tion.

Richards, W. K. 1999. Core Jini. Prentice-Hall.

Sullivan, K. J.; Cockrell, J.; Zhang, S.; and Coppit, D.
1997. Package oriented programming of engineering
tools. In Proceedings of the International Conference
on Software Engineering, 616-617.

Thomas, A. 1998. Enterprise java beans technology.
Technical report, Patricia Seybold Group.

Using Log Files to Reconstruct State-Based Software Architectures *

Gerald C. Gannod_and Shilpa Murthy

Dept. of Computer Science & Engineering

Arizona State University
Box 875406

Tempe, AZ 85287-5406

E-maih {gannod, smurthy}@asu, edu

Abstract

A common activity that occurs within the software devel-

opment community is the use of log files to generate traces

of observed software behavior. As a resource for reverse

engineering, a log file has the advantage of being an ac-

curate account of software behavior. Model checking ap-

proaches work by using exploration to determine whether

certain temporal and safety conditions exist within the state

space of some state-based model. In this paper we describe

an approach to reverse engineering that combines the use

of model checking and log file analysis to reconstruct soft-
ware architectures.

1 Introduction

Software reverse engineering is defined to be a process

of analyzing software components and their interrelation-

ships in order obtain a description of the software at a

high-level of abstraction [1]. Approaches for reverse engi-

neering have been suggested that address the reverse engi-

neering problem from a wide variety of views ranging from

structural makeup to observable behaviors using a wide va-

riety of techniques covering both static and dynamic anal-

ysis.

A common activity that occurs within the software de-

velopment community is the use of log files to generate

traces of observed software behavior. Several different ap-

proaches for creating log files exist including the use of

compiler directives at the time of development and post-

development instrumentation [2].

As a resource for reverse engineering, a log file has the

advantage of being an accurate account of software behav-

ior. However, a disadvantage is that the log file potentially

provides only a subset of possible behaviors of the soft-

ware. As a result, to mitigate the risk of using log files as

a source of information for whatever reason, approaches

*This research supported by NASA Langley Grant NAG-I-2241.
_Contact Author.

CThis author supported in part by NSF CAREER Grant CCR-0133956.

such as adequate testing [3] are needed to ensure that a log

file trace provides a reasonable or adequate amount of be-

havioral coverage.

Model checking approaches work by using exploration

to determine whether certain temporal and safety con-

ditions exist within the state space of some state-based

model. Model checking, using tools such as Spin and SMV,

has gained much attention recently due to many factors in-

cluding the fact that it is relatively lightweight when com-

pared to other formal approaches such as theorem proving.

In this paper we describe an approach to reverse engi-

neering that combines the use of model checking and log

file analysis to reconstruct software architectures. The re-

mainder of this paper is organized as follows. Our ap-

proach to reverse engineering is presented in Section 2.

Section 3 presents related investigations and Section 4

draws conclusions and outlines future investigations.

2 Approach

This section describes the underlying conceptual basis

as well as the reverse engineering approach being used to
reconstruct software architectures.

2.1 Underlying Conceptual Basis

Figure 1 depicts the general context for a software de-

velopment approach that involves the use of model de-

velopment, model checking, and log file generation (or

other debugging approaches). In the general context, the

relationship between models and programs is labeled as

implements-models. The semantics of this relationship em-

phasizes the fact that the model is implemented by a pro-

gram and that a program is modeled by a model.

Model checking tools such as Spin [4] facilitate verifi-

cation of the ordering of events within a model. In Spin the

verification is achieved using linear temporal logic (LTL)

while SMV [5] achieves this using computational tree logic

(CTL). Here we assume the use of Spin and LTL. The

maps-to relationship between log files and LTL specifica-

tions emphasizes the analogy between log files and LTL

specifications. As with the relationship between models

and programs, there is a difference in the level of abstrac-
tion between log files and LTL specifications.

Generates Verified By_

Fil_e_ Maps to _. I LTL Specification }

Figure 1. General Context

Andrews' developed an approach to software testing

based on the concept that given a state-based model such

as a finite automata or statechart, a program implementing
the model must generate behaviors that correspond directly

to events in the model [6]. While the approach does not use
a specific model checking environment like Spin or SMV,

the employed verification technique used does achieve sim-
ilar goals, e.g., verification of the model by using log file
events to drive model execution. As a result, a situation

arises as shown in Figure 2(a), where a model is used to
aid in the development of a program, and a log file is gen-

erated during program execution. In this case, the model is
assumed to be correct and thus the verification against an

LTL specification ignored. If the log file events do not cor-
respond to model events, then the program is considered

faulty and must be modified.

enerates Verified 13y_

Maps to LTL Specification I

(a)

_ne -Abstrast s-..... *9

rates Verified By_

Maps to i, [LTL Specification I

(b)
Figure 2. (a) Testing Context (b) Reverse En-

gineering Context

An interesting result can be derived if the relationships
between program/model and logfile/LTL specification are

reversed as shown in Figure 2(b). Namely, it provides a

means for verifying correspondence between existing sys-
tems and models reconstructed using reverse engineering.

That is, assuming that the program is correct (e.g., we are
interested in learning what the program does rather than

verifying it against requirements) then any log file pro-
duced is an accurate representation of what happens dur-

ing execution. Therefore, any mode/constructed to repre-

sent the program behavior must at some level generate the
events found in a log file with the same temporal orderings,

assuming a well-defined logging policy.

2.2 Process

We are currently developing a reverse engineering ap-
proach based on the context provided in Figure 2(b). The

approach has four primary steps that are necessary to be
successful. In Step 1, log files must be generated from the

program. This step, in some cases, is already completed
since a common activity for some developers is to generate

traces as an aid to debugging. However, there is a risk in
using such traces since the logs can be inconsistently up-
dated (e.g., not all events are captured). As a result, it is

necessary to develop logging tools that follow specific log-

ging policies on what to log and when to log.

In Step 2, a model must be reconstructed from source
code and other sources of information. In our technique,

we assume that the system of study utilizes a state-based
architectural style and that we are interested in deriving

high-level state charts as well as some intermediate models.
Several approaches have been suggested for deriving state
models from code and other artifacts including the work by

Systa [7]. In our approach, model construction can be free
form in the sense that it does not have to be strictly bottom-

up. In fact, the model can be constructed top-down with
little or no direct code analysis. As long as the verification

step ends in a valid model, the approach used for deriving
the model is unimportant.

Step 3 involves the mapping of log file events to LTL or
CTL specifications, with the choice depending on the tool

used to perform model checking. The mapping of log file
events to LTL propositions requires the use of event ab-
straction techniques [9] especially since many events in a

log file may be decompositions of some higher level event
that is captured in a model. We are developing an approach

that will work by partitioning log files into disjoint equiv-
alence classes of events and mapping a representative of a

partition to specific events contained in a model. The result
preserves ordering while relaxing a need for exact event
mapping.

Finally, in Step 4, model checking is used to determine
whether the sequence of events captured in a log file and

encoded with a LTL specification are consistent with the
candidate models developed in Step 2. When an invalid
verification occurs the conclusion that can be drawn is that

either the model is incorrect, the encoding of the LTL spec-

ification is incorrect, or both. In the case of an incorrect

model, modification and refinement of the model becomes

necessary. In regards to the correctness of an LTL spec-

ification, as long as the generated specification preserves

ordering located in the log file and the propositions corre-

spond to events in the model, the verification will provide

accurate results.

Upon completing the four steps, what an analyst would

gain is a state-based architectural and design view of a sys-

tem that has been verified against observable behavior ex-

hibited by the system of study, Using the evaluation di-

mensions defined by Gannod and Cheng [8], the abstrac-

tion distance and traceability of the model from the origi-

nal source code is influenced entirely by the approach used

to perform Step 2 rather than by the underlying reverse en-

gineering framework described here, In terms of accuracy,

the verification step ensures that the model is accurate with

respect to generated log files. However, the completeness

of the verification depends on adequacy criteria used to de-

termine how many log files to generate. The precision of

the approach is considered to be high since the representa-

tion used to encode the models must be formal enough to

employ model checking techniques.

3 Related Work

Andrews [6] provides a framework for automatically an-

alyzing log files using state machines in the context of test-

ing. The Log Files are created using logging policies and

a standard format which specifies certain keywords. A log

file analyzer is specified formally using the Log File Anal-

ysis Language (LFAL) and is built as a set of parallel state

machines with each log file machine checking one thread

of event.

Basten investigated the use of event abstraction to

reduce the apparent complexity of distributed computa-

tions [9]. The work is based on the study of four aspects

of event abstraction: a model describing primitive behav-

ior, a formalism for specifying abstract behavior in terms

of activity and causality, abstract descriptions of behavior,

and verification of primitive or abstract descriptions against

specified behavior.

Systa [7] discusses an experimental environment for re-

verse engineering Java software with respect to the con-

cepts of static and dynamic views. These views contain

overlapping information about software artifacts and their

relations, which form a connection for information ex-

change between the views. Static information extracted

from Java class files is viewed using the Rigi environ-

ment [10]. The dynamic information generated by run-

ning the software under a debugger is viewed as scenario

diagrams using the SCED prototype tool. SCED state di-

agrams can be synthesized from these scenario diagrams.

The SCED scenario diagrams are further used for slicing

the Rigi view and the Rigi view in turn is used to guide the

generation of SCED scenario diagrams and for raising their

level of abstraction.

4 Conclusions and Future Investigations

Our initial experience with the approach has shown a

great deal of promise with some moderate risks in each of

the process steps. An ability to capture appropriate event

information (Step 1) and map those events (Step 3) are es-

pecially crucial to the success of the approach since inac-

curacies in these steps reduce the impact of the verification

step.

To date, we have completed the construction of a log-

ging tool that is based on the use of the Java Debbugging

Platform [11] in order to log events in Java programs with-

out resorting to behavior modification as is possible with

code instrumentation techniques. We are currently devel-

oping tools to support the derivation of LTL specifications

from log files using event abstraction techniques [9].

References

[1] Elliot J. Chikofsky and James H. Cross. Reverse Engineer-

ing and Design Recovery: A Taxonomy. IEEE Software,

7(1):13-17, January 1990.

[2] Kevin Templer and Clinton L. Jeffery. A Configurable Au-
tomatic Instrumentation Tool for ANSI C. In Proc. of the

Automated Software Engineering Conference, 1998.

[3] Elaine J. Weyuker. The Evaluation of Program-Based Soft-

ware Test Data Adequacy Criteria. Communications of the

ACM, 31(6):668--675, June 1988.

[4] Gerard Holzmann. The Spin Model Checker. Transactions

on Software Engineering, 23(5):279-295, May 1997.

[5] K.L. McMillan. Getting started with smv. Cadence Berke-

ley Labs, March 1999.

[6] James H. Andrews. Testing using Log File Analysis: Tools,

Methods and Issues. In Proc. of 13th Annual International

Conference on Automated Software Engineering (ASE'98),

pages 157-166, Honolulu, Hawaii, October 1998.

[7] Tarja Systa. On the Relationship between Static and Dy-

namic Models in Reverse Engineering Java Software. In

Proc. of the 6th Working Conf. on Reverse Engineering

(WCRE99), pages 304-313, 1999.

[8] Gerald C. Gannod and Betty H. C. Cheng. A Framework for

Classifying and Comparing Software Reverse Engineering

and Design Recovery Techniques. In Proc. of the 6th Work-

ing Conf. on Reverse Engineering. IEEE, October 1999.

[9] Twan Basten. Event Abstraction in Modeling Distributed

Computations. In K. Ecker and M. Krmer. editors, Work-

shop on Parallel Processing, Proc., pages 46---65, Lessach,

Austria, September 1993.

[10] Scott R. Tilley, Kenney Wong, Margaret-Anne Storey, and

Hausi A. Miiller. Programmable Reverse Engineering. The

International Journal of Sof-m,are Engineering and Knowl-

edge Engineering, 4(4):501-520, 1994.

[11] The Java Platform Debugger Architecture(jpda). [Online

Available] http://java.sun.com/products/jpda.

Automated Support for Service-Based Software Development and

Integration

Sudhakiran V. Mudiam and Gerald C. Gannod 1 2

Dept. of Computer Science & Engineering
Arizona State University

Box 875406

Tempe, AZ 85287-5406

E-maih {kiranmvs, gannod}@asu, edu

Timothy E. Lindquist

Dept.ofElectronicsand Computer

Engineering Technology

Arizona State University - East

7001 E. Williams Field Road, Building 50

Mesa, AZ 85212

E-maih t im@asu, edu

IContact Author.

ZThis author supported in part by NSF CAREER Grant CCR-0133956.

Abstract

A service-based development paradigm is one in which components are viewed as services. In this model,

services can interact with one another and be providers or consumers of data and behavior. Applications

built within this paradigm dynamically integrate services at runtime based on available resources. This

paper describes an architecture-based approach for the creation of services and their subsequent integration

with service-requesting client applications. The technique utilizes an architecture description language to

describe services and achieves run-time integration using current middleware technology.

1 Introduction

Service-based technologies are mechanisms whereby access to information and behavior is no longer con-

strained by traditional company and organizational boundaries. Web Services, for instance, employ broker-

based middleware that use internet protocols such as HTTP and XML [Stal, 2002], allowing information

and data to be provided by service providers and consumed by clients over the internet. A service-based

development paradigm, or services model [Fremantle et al., 2002], is one in which components are viewed

as services. In this model, services can interact with one another and be providers or consumers of data

and behavior. Applications built within this paradigm dynamically integrate services at runtime based on

available resources which facilitates the creation of a federation of services (e.g., new "super-services') that

can evolve over time.

Some of the defining characteristics of service-based technologies include modulari_, availability, de-

scription, implementation-indepeMence, and publication [Fremantle et al., 2002]. In the service-based de-

velopment paradigm, a primary focus is upon the definition of the interface needed to access a service (de-

scription) while hiding the details of its implementation (implementation-independence). Since the client

and service are decoupled, other concerns such as side effects become non-factors (modularity). One of the

potential benefits of using a service-based approach for developing software is that at any given time, a wide

variety of alternatives may be available that meet the needs of a given client (availability). As a result, any

or all of the services may be integrated with a client at run-time (published).

This paper describes an architecture-based approach for the creation of services and their subsequent

integration with service-requesting client applications. The technique utilizes an architecture description

language to describe services and achieves run-time integration using current middleware technology. The

approach itself is based on a proxy model]Gamma et al., 1995] whereby the "glue" code for both services

and applications that make use of the services is automatically generated. The Jini interconnection tech-

nology [Richards, 1999] is used as a broker for facilitating service registration, lookup, and integration at

runtime.

The remainder of this paper is organized as follows. Section 2 describes background material in the areas

of software reengineering, software architecture and the middleware technology we are using to enable

dynamic integration (i.e., Jini [Richards, 1999]). The proposed approach for constructing services and

developing service-based applications is presented in Section 3. An example demonstrating the proposed

approach is described in Section 4, Section 5 discusses related work, and Section 6 draws conclusions and

suggests further investigations.

2 Background

This section describes background material on specific patterns supported, software architecture and the Jini

Interconnection Technology.

2.1 The Proxy Pattern

Proxy Pattern [Gamma et al., 1995] provides a surrogate or a placeholder for another object to control access

to it. In this pattern a client accesses a realSubject only via a Proxy. The proxy provides an intermediate

layer between the client and the realSubject. The proxy acts as a local representative for the realSubject and

typically lives in the client's address space. It is necessary for the proxy to provide exactly the same interface

as the realSubject. All the access to the realSubject from the client have to go thro the Proxy. In most cases

the client is not even aware of the proxy object and it assumes that it is directly talking to the realSubject.

Figure 1 shows the interaction between a client and a realSubject via a proxy. In the approach described

in this paper, the proxy pattern plays a central role in the definition of services as well as the realization of

service integration.

I Client

subject ! -(Proxy (".JRealS ubjec-------_]

- .ealS°bjec,I "l j

Figure 1: Proxy Pattern [Gamma et al., 1995]

2.2 The Adapter Pattern

Re-engineering is the process of examination, understanding, and alteration of a system with the intent

of implementing the system in a new form [Chikofsky and Cross, 1990]. Since the functionality of the

existing software has been achieved over a period of time, it must be preserved for many reasons, including

providing continuity to current users of the software. One approach to re-engineering is to use the adapter

pattern [Gamma et al., 1995] whereby a legacy interface is converted into a form that a client application

can utilize. The adapter pattern allows components that otherwise could not work together because of

incompatible interfaces to be combined to form a new software system. In our approach the adapter pattern

is used to re-engineer legacy command-line software to provide the software as services. Specifically, in

terms of the Gamma et al. adapter pattern, we use the concept of the object adapter in the manner shown in

Figure 2.

2.3 Software Architecture

A software architecture describes the overall organization of a software system in terms of its constituent

elements, including computational units and their interrelationships [Shaw and Garlan, 1996]. In general, an

Adaptee 11] Specific Reques,(!

Adapter __

I Requestt)lq _ adaptee->Specfic Request, 1

Figure 2: Object Adapter [Gamma et al., 1995]

architecture is defined as a configuration of components and connectors. A component is an encapsulation

of a computational unit and has an interface that specifies the capabilities that the component can provide. In

addition, the interface specifies ways the component delivers its capabilities. The interface of a component

is specified by the type of the component, by one or more ports supported by the component, and by the

constraints imposed on the ports of the component, where component types are intended to capture archi-

tectural properties. Ports are the interaction points through which a component exchanges resources with its

environment. Port specifications specify the signatures, and optionally, the behaviors of the resource.

Connectors encapsulate the ways that components interact. A connector is specified by the type of

the connector, the roles defined by the connector type, and the constraints imposed on the roles of the

connector. A connector defines a set of roles for the participants of the interaction specified by the connector.

Connector types are intended to capture recurring component interaction styles. Components are connected

by configuring their ports to the roles of connectors. Each role has a domain that defines a set of port types

and only the ports whose types are in the domain can be configured to the role.

Another important concept in the area of software architectures is the concept of an architectural style.

An architectural style defines patterns and semantic constraints on a configuration of components and con-

nectors. As such, a style can define a set or family of systems that share common architectural semantics

[Medvidovic and Taylor, 1997]. For instance, a pipe andfilter style refers to a pipelined set of components

whereas a layered style refers to a set of components that communicate via hierarchies of interfaces. There

are several architecture description languages that allow the user to describe the architecture of a system.

2.4 Jini

The primary enabling feature of the work described in this paper is the existence of the Jini technology for

the delivery and management of services. In a typical Jini network, services are provided by devices that are

connected to the network. Typically these devices consist of a variety of products ranging from cell phones,

desktop devices, printers, fax machines, and Personal Digital Assistants (PDAs).

Figure 3 shows the layered architecture of the Jini Interconnection technology where the Jini Technology

layer provides distributed system services for activities such as discovery, lookup, remote event management,

transaction management, service registration, and service leasing. When a device or "service" is plugged

into a Jini network, it becomes registered as a member (e.g., service) of the network by the Jini lookup

service. When a service is registered, a proxy is stored by the lookup service. The proxy (often imple-

mented with an adapter) can later be transported to the clients of the service. Once registered, other network

members can discover the availability of the device (e.g., service) through the lookup service. When a client

application finds an appropriate device, the lookup service sets up the connection but then is no longer in-

volved in subsequent interactions between the client and device. In our approach to component integration,

we use the Jini technology to provide a standard method for registering and connecting a client to corre-

sponding software components that are acting as services. We are using Jini technology outside the scope

of its original intention of being able to allow devices to interact with one another by using the discover and

join protocols supported by this technology to implement service-based software development.

Application[I Service

Jini Technology

Java l Java
Technology Technology

Device

Figure 3: Jini Architecture

One of the advantages of using this Jini-based integration technique is that it facilitates construction of

applications "on-the-fly" whereby components can be used on an as-needed basis. Another advantage arises

from the fact that services must implement a fairly general set of routines in order to participate in a Jini

network. One of the disadvantages of this approach stems from the fact that the interface to the services

must be well-defined or must be negotiated between the client and the device upon connection. That is,

the client must have some knowledge about how to use the service. We have implemented our framework

on Jini for a number of reasons including the fact that it allows for the creation of federations of services.

More importantly, an advantage of using Jini over the emerging Web services technologies is that many

of the current and future capabilities of the web services infrastructure are already supported by Jini, thus

providing a view into forthcoming capabilities of web service-based software development without needing

to wait for the completion of development of web service support technology.

3 Approach

This section describes the service-based development approach including the techniques used for defining

services, specifying client applications, realizing integration, and generating glue code.

3.1 Overview

The approach described in this paper follows a services-based model for software development. The method-

ology that we have developed follows closely the model suggested by Stal [Stal, 2002] for web services,

although the technology that we are using to realize our approach is Jini [Richards, 1999]. It is our belief

that the technique is applicable to the web services domain and that translation into that technology would

require little change at the conceptual level and a modest amount of change at the technology level.

The approach itself focuses on two concerns with respect to software reuse. That is, it addresses both for

reuse and with reuse concerns. With respect to for reuse, the approach involves the construction of services

via the use of adapter and proxy synthesis. Specifically, the methodology involves two steps for creating

services as follows:

1. Specification of the components as services

2. Generation of the services using proxies via the construction of appropriate adapters and glue code.

These services are consequently registered and made available on a network.

In the context of this paper, we address the creation of command-line applications [Gannod et al., 2000] as

services. As part of our ongoing research work we are investigating approaches for integrating a wide-variety

of services including web services and .NET components.

With respect to with reuse concerns, the approach involves the construction of applications using services

as follows:

1. Specification of a client to make use of services from the repository or network

2. Generation of the client (both manual construction of client application specific code and automated

generation of glue code)

3. Execution of the client, including integration of the specified services at runtime

Figure 4 shows a diagram depicting the basic architecture for applications created within the infras-

tructure described in this paper. Structurally the architecture uses a layered style with a layer of services

accessed via a layer of proxies. Within our approach, a user (e.g., developer) is responsible for writing

the source code for the client application along with the specification of the architecture for client. Among

other things, the client specification contains a description of the basic services that the client application

will need in order to be a complete system. All other source code, including code necessary to realize the

connections between the client and employed services, is generated based on the specifications describing

clients, services, and connectors. At run-time, the services are bound to the client component using the Jini

lookup service.

Client

3.2 Service Generation

Figure 4: Basic Architecture

In order to generate services from legacy components, we take the approach of wrapping the components

by utilizing the interface provided by the component. For example, command-line applications have a well

defined interface. The interface is based entirely on the knowledge of how these applications are used rather

than how they work.

3.2.1 Specification and Synthesis

The concept of using an adapter for wrapping legacy software is not a new one [Gamma et al., 1995,

Sneed, 1996, Cimitile et al., 1998, Jacobsen and Kramer, 1998]. As a migration strategy, component wrap-

ping has many benefits in terms of re-engineering including a reduction in the amount of new code that must

be created and a reduction in the amount of existing code that must be rewritten.

In regards to wrapping components, our approach uses two steps. First, a specification of the legacy

software as an architectural component is created. These specifications provide vital information that is

required to define the interface to the legacy software. Second, the appropriate adapter source code is

synthesized based on the specification.

3.2.2 Specification Requirements

To aid in the development of an appropriate scheme for the wrapping activity, we defined the following

requirements upon specifications of the interface to legacy software.

(S1) A sufficient amount of information should be captured in the interface specification in order to mini-

mize the amount of source code that must be manually constructed.

($2) A specification of the interface of the adapted component should be as loosely coupled as possible

from the target implementation language.

($3)Thespecificationof theadaptedcomponentshouldbeusablewithina moregeneralarchitectural

context.

Therequirement$1addressesthefactthatweareinterestedin gainingabenefitfromreusinglegacy

software.Asaconsequence,wemustavoidmodifyingthesourcecodeofthelegacysoftware.At thesame

time,wemustprovideaninterfacethatissufficientforusebyatargetapplication.Toprovidethatinterface,

asufficientamountof informationisneededinordertoautomaticallyconstructtheadapter.

Asaninitialinvestigationintotheautomatedsynthesisof theadapters,weselectedcommand-lineap-

plicationsasoursourceofreusablelegacysoftware.Selectionof thisclassoflegacyapplicationsaddresses

themodificationconcernof requirementS1sincesourcecodeis notavailable.Assuch,wearerequired

to provideaninterfacethatisbasedsolelyon theknowledgeof howtheapplicationisusedratherthan

howit works.In addition,theselectionof thisclassof applicationshastheconsequenceof enforcingthe

useof aparticulararchitecturalstyle,asdeterminedbythenatureof thelegacyapplication.In thiscon-

text,wedefinedseveralpropertiesthatwouldbeneededto appropriatelyspecifythebehaviorprovided

byacommand-lineapplicationincluding:Signature, Command, Pre, Post, and Path. We identified these

properties by examining the type of behaviors, inputs, and outputs generally associated with command-line

applications.

The Command property identifies the command used to invoke the application while the Pre and Post

properties identify commands that are contained within the adapter code that will establish preconditions

and post-conditions on the execution of the legacy component, respectively. Path indicates the path to the

given command-line application and the Signature property defines the types and names of the expected

input and output of that application. Here, since we are dealing with command-line applications, the input

types are expected to be strings. Accordingly, a certain degree of semantic information must be used in

the name of the input. Fortunately, for command-line applications, these names are typically limited to file

names and command-line options.

Table 1 shows the properties used in the specification of services, clients and connectors. A service

component specification consists of two parts: properties and ports. The properties section describes style

of the service, while the ports section describes functions provided by the service. In addition, the service

specifications indicate style-based information as well as conditions or commands that need to be true or

executed, respectively, in order to establish an environment necessary to use the service. Finally, a key in

terms of a "service type" (encoded as an Interface property) is used to support a service lookup, which is

later utilized during application integration.

Group Attribute Description
Service Properties Component-Type Architectural style this component adheres to

Service Port Properties Signature
Return

Cmd
Pre

Post
Interface

Path

Port-Type
Shared-GUI

The port's signature
The port's return type

The command line program being wrapped

Pre-processing command
Post-processing command

The generic interface implemented by this port
Path to the wrapped command line program

The port's type based on the Component-Type
Boolean indicating shared (true) or exclusive (false) GUI

Client Properties Part-of-client Does this specify the client application
GUI-CodeFile The filename for client's GUI code

Component-Type Architectural style this component adheres to
Shared-GUI Boolean indicating shared (true) or exclusive (false) GUI

Client Port Properties Port-Type The port's type based on the Component-Type

Interface The generic interface that this port can bind with

Connector Properties Connector-Type Architectural style this connector adheres to

Connector Role Prop-Type The connectors role based on the Connector-Type

Table 1: Properties

The requirement $2 (i.e., the decoupling of a specification from a target implementation language) is

based on the desire to apply the synthesis approach to a variety of target languages and implementations. In

addition, this requirement facilitates enforcement of requirement S 1 by ensuring that new source code is not

artificially embedded in the specification. While satisfying this requirement is ideal, we found in our strategy

that a certain amount of implementation dependence was necessary due to the fact that our implementation

would make use of Jini Interconnection Technology [Richards, 1999].

When a component has been wrapped using our technique, an interface is defined that facilitates the use

of the source legacy software as part of a new application. However, as indicated by requirement $3, it is also

desirable to be able to use the specification of the adapted component within a more general architectural

context. That is, it is advantageous to be able to use the specification as part of the software architecture

specification for new systems. In using a content-rich specification, where interfaces are defined explicitly,

the added benefit of providing information that can be integrated into an architectural specification of a

target application is gained.

In order to realize the requirements placed upon desired interface specifications for legacy software

wrappers, we used the ACME [Garlan et al., 1997] Architecture Description Language (ADL). Specifically,

we used the properties section of the ACME ADL to specify the interface features described earlier (e.g,

Signature, Command, Pre, Post, and Path). ACME is an ADL that has been used for high-level architectural

specification and interchange [Garlan et al., 1997]. ACME contains constructs for embedding specifications

writtenin awidevarietyof existingADLs,makingit extensibletobothexistingandfuturespecification

languages.ACMEissupportedbyanarchitecturalspecificationtool,ACMEStudio[AcmeStudio,2002],

thatfacilitatesgraphicalconstructionandmanipulationofsoftwarearchitectures.

Figure5showsascreencaptureofanACMEStudiosessioninwhichacomponenthasbeenspecified

asanaggregationof twowrappedapplicationsexpressedasports.In thefigure,thecomponentlabeled

RCSis theaggregatecomponentandconsistsof twoports,ChklnandChkOut.These ports are used

as wrappers for the Revision Control System (RCS) programs ci and co, respectively. The bottom right

portion of the figure contains a list of the properties used to derive the wrapper along with their corresponding

values. The amount of knowledge that is required in order to write the wrapper specification is limited to a

working knowledge of how a legacy application is used. Often this includes knowledge of the command-line

parameters as well as other bits of information that can be retrieved from manual pages (if they exist) and

current users.

=_1
System topleveL d

q.I Global Type Deft

- _ System toplevel

- • RCS

6 Chkln

Ill ChkOut

,t I zJ
_eedy

i iin

Chkln

All Properties I Inveriants] Heuristics I

Name l T),1oe ,

Cmd string

interface string

Path string

Post string

Pre string

Return string

Signature string

[Value

ci ", filename + perams

VersionManagement
C:\RKTOOLSkBIN\CI EXE

< No Value >

WriteFileD ata(file date. filename)

Boolean resuff

Stringfilename, String params, Strincj filedata

...................... J t '"

Editing b'_tem loplevel' in Desi NUM
ii i i i in iiii i iiilll I

Figure 5: ACMEStudio Session

Several benefits arise from the use of the ACME ADL to specify the legacy application wrappers. First,

if the specification of an adapted component is realized as a port, then several such components can be

aggregated into a single component. As a consequence, the aggregated component can offer each of the

behaviors as a service through a port interface. For example, as demonstrated in Section 4, the RCS suite

of applications can be aggregated into a single component that offers services such as check-in and check-

out via ports of the aggregate component. Second, via the use of ACMEStudio, the specification of an

9

adaptedcomponentcanbeintegratedintothespecificationof targetapplications.Consequently,software

architectureanalysistechniquesthatsupporttheuseof ACMEcanbeappliedto targetapplicationsthat

utilizethewrappedlegacysoftware.Finally,sincelibrarysupportforACMEconsistsof asetof standard

parsersandothermanipulationfacilities,constructionofsupporttoolsisconvenient(seeSection3.5.1).

3.2.3 Synthesis

As stated earlier, the class of legacy systems that we are considering are command-line applications. Given

this constraint, we make the assumption that any client applications utilizing the wrapped components have

a certain amount of knowledge regarding the interface of that wrapped component. We find this assumption

to be reasonable due to the nature of legacy software migration where legacy applications have an organiza-

tional history with well-known usage profiles.

We chose the Java programming language and environment as our target migration platform for a num-

ber of reasons. First, Java continues to enjoy increases in popularity, and thus any opportunity to integrate

legacy systems into Java applications has obvious benefits. Second, the object-oriented nature of Java fa-

cilitates straightforward construction of components consisting of an aggregation, or federation, of wrapped

legacy components. Finally, and most importantly, we found that the services provided by the Jini Con-

nection Technology [Richards, 1999] for smart devices could also be applied to software components. As a

result, software can be packaged as services on a Jini network and integrated dynamically into distributed

applications. Accordingly, our approach for synthesizing wrappers for legacy components is based on im-

plementing the standard discover and join protocol that is defined by Jini Interconnection Technology.

In our approach, the information that is needed to generate wrappers corresponds exactly to the proper-

ties associated with the ports shown in Figure 6. In addition to the Signature, Command (shown as Cmd in

Figure 6), Pre, Post, and Path properties, we added the Interface, and Return fields. These fields de-

fine the Jini service name of a port and the value returned after interaction with the port, respectively. In the

synthesis process, ACME specifications are combined with a standard template that implements the setup

routines that are required to register a service on a Jini network. In addition to synthesizing the appropriate

wrapper, the support tool that we have constructed to automate this process generates the appropriate source

code for facilitating interaction between a potential client and the wrapped component. At present, this is

an automated tool that generates fully executable code for the wrapped application and does not require the

user to modify or write any new code.

While the investigations that are described here are limited to our efforts to adapt command-line ap-

plications for use within a Jini-based software integration environment, we are pursuing investigations into

broadening the context of this approach to other legacy software components including GUI-based appli-

10

Component RCS : {

Properties {

Component-type : string : "Call Return";

};

Port ChkIn = {

Properties {

Signature : string = "String filename,String params,String filedata ";

Return : string = "Boolean result";

Cmd : string = "ci + filename + params";

Pre : string = "WriteFileData(filedata, filename)";

Post : string = "";

Interface : string : "VersienManagement";

Path : string = "C:\\RKTOOLS\\BIN\\CI.EXE ";

Port-type : string = "callee";

Shared-GUI: string = "true";

}; }; };

Component Lzpr = {

Properties {

Component-type : string : "Call Return";

};

Port Print : {

Properties {

); }; };

Component Javac : {

Properties {

Component-type : string = "Call Return";

};

Port Compile = {

Properties {

}; }; };

Figure 6: ACME Spec: Services Section

cations. In addition, due to the ability of Java and consequently Jini to run anywhere, we are investigating

approaches for automatically wrapping applications that exist within heterogeneous operating system envi-

ronments.

3.3 Client Generation

Once the services are generated and stored in a repository, a client application can be architect-ed. First

we need to specify the client application taking into account the architectural style of each of the services.

Once a client is specified, it can be verified and generated. In this subsection we look at the requirements

for specifying the client and then describe synthesis of the client.

3.3.1 Specification

Refer again to Table 1 which, in addition to the properties for service specifications, contains the prop-

erties of client application components and connectors. When dealing with integration at the component

level, two issues arise (among others) that are of interest. First, the problem of architectural style mis-

match [Shaw and Garlan, 1996] occurs when the underlying assumptions made by components conflict.

Second, most modern applications provide a graphical user interface (GUI). As a result, integration of

11

off-the-shelfcomponentscanleveragetheseuserinterfacesin ordertotakeadvantageof previously built

technology. To cope with these issues we impose two requirements on the specification of client applica-

tions.

(CI) The specification of the components should capture the notion of architectural style so that the high-

level interaction between clients and services can be verified.

(C2) The specification must facilitate the use of shared and exclusive GUI components.

The requirement C1 addresses the fact that a component must provide a notion of architectural style.

A component's style plays a very important role when it interacts with other components by imposing

interaction constraints. Using a basic style attribute, architectural mismatches can be determined by stating

the assumption that a component is making regarding style.

Requirement C2 addresses the fact that a service may provide a GUI that allows a user to access and

control the service. In this context, there may be GUI components provided by services that are either

sharable by other services or exclusive to the service. A sharable GUI component can be used by both the

client as well as other integrated services while an exclusive GUI component can only be used by the service

that provides the interface.

3.3.2 Synthesis

The second stage of our approach involves the synthesis of application code. Figure 7 shows a sample

specification of a client. The information contained within client specifications are used to support the

synthesis of client code. This synthesis step utilizes two features; First, the information regarding connectors

and attachments, such as those shown in Figure 8 are used to determine the relationships between client

applications and desired services. Second, information regarding GUI's provided by services is used to

determine how to realize the GUI in a client application.

Both the service and client synthesis steps utilize a template-based approach to synthesize code. That is,

a standard file has been created that has stubs containing place holders that must be instantiated with either

service or client specific parameters. Figure 9 shows a piece of code (e.g., POC) for the client template and

depicts the replacement points in with in "()" tags. Given the nature of the code being generated (e.g., code

used to realize integration between services and clients that utilize those services), we have found that this

approach allows the developer to focus primarily upon client operation issues while delegating connector

and integration concerns to automated tools.

While a template-based approach lacks generality and freedom necessary to synthesize complex con-

nector and integration code, the very nature of service-based components dictates a level of interaction that

promotes loose coupling between components. In addition, at the core of service-based applications is the

12

Component Editor : {

Properties {

Part-of-client : string : "true";

GUI CodeFile : string = "ClientGUICode.java";

Component-type : string = "Call Return";

Shared-GUI: string : "true";

};

Port VMPort = {

Properties {

Port type : string = "caller";

Interface : string = "VersionManagement" ;

}; };

Port COMPILING_PORT = {

Properties { Port-type : string = "caller"; ..};

};

Port PRINTING PORT = {

Properties { Port type : string = "caller"; ..};

}; };

Figure 7: ACME Spec: Client Section

notion of common interfaces between clients and services. As a result, code that implements connection

and integration operations can be easily parameterized, further leading towards a template-based software

synthesis approach.

3.4 Integration and Runtime Considerations

3.4.1 Architectural Style Verification

As mentioned earlier, specifications in our framework capture the style characteristics of components. To

facilitate this verification a tool called Arch Verifier is used to verify that the styles of components are

consistent. It does so by verifying that all the attachments between client and service components match.

Our current implementation imposes an exact match criteria whereby components can only be connected

to components of the same type. For example, a Call Return component can only be connected to other

Call Return components through a Call Return connector. Our future investigations include expanding the

verifier to allow for mappings of other types, where appropriate.

3.4.2 Client Generation

A client can be generated once the Arch Verifier validates the architecture. A synthesis tool called Generator

makes use of a client template similar to the one shown in Figure 9 and fills the appropriate sections with

the list of services (indicated by the (List of Services) tag) that are to be integrated with the client

and the user-defined GUI components (indicated by the {GUI- CodeFi 1 e > tag) of the client. Typically, the

developer of these client GUI components by the can assume that certain service classes provide common

GUI facilities. However, the actual names of shared and exclusive GUI components need not be known by

a client.

13

Connector checking_out = {

Properties { Connector-type : string = "Call Return"; }

Role caller =

Properties Prop type : string = "output" ;

);

Role callee =

Properties Prop type : string = "input";

}; };

Connector checking in = {

Properties { Connector type : string = "Call Return"; }

Role caller = {

Properties { Prop type : string = "output"; };

};

Role callee = {

Properties { Prop-type : string = "input"; };

}; };

Connector compiling = {

Properties { connector type : string - "Call Return";

Role callee =

Properties Prop-type : string = "input"; }

};

Role caller =

Properties Prop-type : string = "output"; ;

}; };

Connector printing = {

Properties { Connector type : string - "Call Return"; };

Role callee =

Properties Prop-type : string = "input"; };

};

Role caller =

Properties { Prod type : string = "output"; };

};);

Attachments {

Editor.VM Port to checking_in.caller;

Editor.VM_Port to checking_out.caller;

Editor.COMPILING_PORT to compiling.caller;

Javac.Compile to compiling.callee;

Editor. PRINTING_PORT to printing.caller;

Lzpr. Print to printing.callee;

Rcs.ChkOut to checking_out.callee;

Rcs.ChkIn to checking_in.callee;

};

3.4.3 GUI Integration

Figure 8: ACME Spec: Connector Section

Since many services can be GUI-bound, it is necessary to provide a facility for integrating the GUI compo-

nents. In our framework, the adapters for the various services (as shown in Figure 14) implement a common

interface that allows the client to get a handle on the shared and exclusive components of a GUI. Shared

components are potentially used across multiple services and are identified using a name taken from a stan-

dard GUI vocabulary (for example "CodeWindow" or "ResultsWindow"). The name is then used to identify

which GUI components can be shared across services. Such shared components facilitate the integration of

the GUI components by allowing reuse of widgets that provide the same functionality. An exclusive compo-

nent is independent and cannot be shared between services. The exclusive GUI components of the adapters

are used as is but may interact with one or more of the shared components. For both shared and exclusive

14

public class MyClient

{
static String[] services = <ListOfServices> ;

static Hashtable state = new Hashtable();

<addClientComponentFuncs>

public static void main (String[] args)

{
//discover and join the jini network.

//discover all the services on the network

//and get the adapter for the service.

}
private static boolean alreadyAdded(String key)

{
//check if a shared component

// with key has been added.

}
private static boolean inMyList(String serviceName)

{
// verify if the serviceName is in the

// list of services.

}
}

Figure 9: Client Template POC

components, the interaction with the client GUI and application is seamless since the adapters handle direct

interaction with the services while the client need only interact with the adapters.

3.5 Implementation

In this section we discuss the implementation aspects of the service generation and the client generation

using tools that we have built.

3.5.1 Service Generation

To support our technique for constructing wrappers for legacy software, we have created a Java support

tool called ServiceTool. Figure 10 shows the detailed architecture of ServiceTool which takes an ACME

specification and produces a wrapper configured for a Jini network. In the diagram, the rectangles with

the square corners represent software components while the rectangles with the rounded corners represent

files. The ArchParser component reads in an ACME specification similar to the one shown in Figure 6 and

builds an internal model of the architecture. The Component Inspector component uses the output of the

ArchParser to access the interface specification of the wrapper component and produces a set of ports. The

h_terface Generator component uses the set of ports to generate the interface or connector to the service.

The Function Generator component uses the same port information to generate functions that implement the

service. The Service Generator component uses these functions along with the ServiceTemplate to generate

15

thefinalJavasourcecodefortheservice.

_ ACME _

Arch Parser

Component

L Inspector I

Interface Function

Generator Generator

__4__

Service

Generator

loter ace] I Se ce1Source Source

Figure 10: Service Tool Architecture

The ArchParser uses the ACMEParser from the ACMELib toolkit [Acme Lib, 1997] to parse ACME

specifications. ACMELib is a library that facilitates the construction of architectural tools in Java that read,

write and manipulate software architectures specified in the ACME ADL. The ACMELib framework is

designed to support the rapid development of two classes of applications (1) tools that translate between

"native" ADLs (such as Rapide [Luckham and Vera, 1995] and Wright]Allen and Garlan, 1997]) and (2)

native ACME-based architectural design and analysis tools.

The Service Generator component is implemented as an awk script that replaces tags in the ServiceTem-

plate file with functions generated by the Function Generator component and the names of services.

Figure 11 contains a portion of the ServiceTemplate file which contains all of the application and service

independent source code and provides the routines necessary to integrate the legacy code into a Jini net-

work. Specifically, the ServiceTemplate contains functions that implement the discover and join protocol for

registering a service with the lookup service. The ServiceTemplate also contains tags that are place-holders

for the automatically generated functions. For instance, in Figure 11 the tag <put-ServerName> is a

place-holder for the final name of the adapter component.

In addition to the ServiceTemplate, there is also a reusable set of functions that can be utilized in an

interface specification and consequently in the generated wrappers. For instance, the ReadFi leData ()

and WriteFileData () routines (shown in Figure 12), are available as functions for use within the Java

code to provide standard read-from and write-to file support, respectively.

16

public class <put-ServerName> extends UnicastRemoteObject

implements <put-InterfaceName>, ServiceIDListener, Serializable

{

public <put ServerName> () throws RemoteException

{
super () ;

]

<put-Functions>

Figure 11: Excerpt of the ServiceTemplate

void WriteFileData(String filedata, String filename {

// the generic WriteFileData..

try{
File f = new File(filename);

System.out.println("IsFile() : " + f.isFile()) ;

PrintWriter out = new PrintWriter(new FileOutputStream(f), true) ;

out.print(filedata) ;

out.close() ;

}
catch (Exception e)

{
System.out.println ("Server: Error writing file: " + e);

}

String ReadFileData(String filename) {

try{

BufferedReader in = new BufferedReader(new FileReader(filename));

String s;

StringBuffer sb = new StringBuffer ();

while{ (s :in.readLine()) != null)

{
sb.append Is);

sb.append ("\n");

}
in.close();

// returning the whole file as a string..

return (sb.toString());

}
catch (Exception e)

{

}
}

System.out.println ("Server: Error writing file: " + e);

return{"Server: Error writing file: "+ e);

3.5.2 Client Generation

Figure 12: Sample Library Routines

To support the construction of client applications, we have created a support tool written in Java called

ClientGenTool. Figure 13 shows the detailed architecture of the ClientGenTool which takes an Acme archi-

tecture (specification) and produces a Client source. In this figure, the rectangles with the square comers

represent software components while the rectangles with the rounded comers represent data stores or repos-

itories.

17

Client GUI)

Acme Architecture]

[
I Acn_e Parser

l

(Internal Arch)_ Arch Verifier

1

Extract

(C[ientComp t) Q ListOfServices)

Generator

(Clle.tSou_c_)

-Client Template]

Figure 13: ClientGen Tool Architecture

The ArchParser reads in ACME architecture specifications similar to the ones shown in Figures 6, 7

and 8 and builds an internal model of the architecture (h_ternaIArch). The ArchParser uses the ACMEParser

from the ACMELib toolkit [Acme Lib, 1997] to parse ACME specifications. The Arch Verifier uses the

Internal Arch model to verify the style of the architecture based on the Component-type and the Port-type

properties. Once it is verified, the Extract component identifies the Client Component, Client GU1, and the

List of Services from the h2ternal Arch model. All these are used by the Generator component along with

Client Template to produce the Client Source.

4 Examples

To demonstrate the use of the integration technique described in this paper, we have created two examples,

a simple editing application and a simple network monitoring example.

The intent of the simple editing application is to support text file editing with version control, compi-

lation and printing facilities. The intent of the simple network monitoring example is to monitor various

servers on a network by creating a consolidated console using simple administration tools running on the

servers. All the services were generated using ServiceGenTool [Gannod et al., 2000] while the client appli-

cations were generated using ClientGenTool.

4.1 Editing Application

Figure 14 shows the conceptual architecture of the editing application. The client application interacts with

services via each of their respective adapters. The adapters provide GUI components that are integrated by

18

theclienttorendertheclientapplication.TheseGUIcomponentsmayinteractwithcomponentsfromother

services(e.g.,theymaybesharedorexclusive).If aGUIcomponentisexclusive,it mustbeintegrated

directlybytheclientasrequiredbytheservice.If theGUIcomponentisshared,it maybeusedonlyif a

similarcomponentdoesnotalreadyexist.Forexample,theRCSserviceadapterprovidesasharedediting

panelcomponentnamed"CodeWindow".If theclientalreadyhasa"CodeWindow"component,theshared

componentfromtheRCSserviceadapterisnotused.

l Client_Application I

liem_GUIO [

Figure 14: Conceptual Architecture: Editing Application

4.1.1 Specification

Figures 6-8 contain portions of the specifications used to describe and generate the editor application. As

shown in Figure 7, the Editor component is a Call Return component, as indicated by the Component-Type

property. The Editor component has three ports, namely V3{_port, COMPILING_port, and PRINT-

ING_port. These ports correspond to the services that the editor seeks to bind with at run-time.

The connectors checking_out, checking_in, printing, compiling, shown in Figure 8 con-

nect the editor to the appropriate version management, printing, and Java compilation components, re-

spectively. The Connector-Type for these connectors must match the Component-Type property of the two

components it connects. The attachments section in the specification (shown in Figure 8) describes the

attachments between roles and ports. While the specification shown in this examples identifies specific

services, attachments can actually be made to generic components that identify a class of services.

4.1.2 Client Application

The ClientGenTool generates the client using specifications similar to the ones described above. Once

generated, the client becomes the focal point for the integration of the various services. Specifically, at run-

time the client joins a Jini network and looks for services with which to integrate. Once found, the services

are bound via an adapter and the GUIs are integrated along with the GUI provided by the client. Figure 15

depicts the editing application as a result of executing the client side code. In this case, the client has been

19

executedonaJininetworkthatdoesnothaveanyof thedesiredservicesavailable.

4.1.3 Integration and Execution

Figure 15: Client by itself

As each service is executed it joins a Jini network, the client learns of its existence and integrates with it

by interacting with the corresponding adapter. The service adapter provides GUI components that can be

either exclusive or shared. In the case of exclusive components, they are used as is. In the case of shared

components, they may be used in lieu of another similar component. Figure 16 shows the result of the

integration once all the services have joined the Jini network.

Once all the services have been integrated, the application appears as shown in Figure 16. In the diagram,

the top text pane is the original editing window provided (and shared) by the client, The buttons directly

below the top text pane are provided by the RCS service and the Javac service, respectively. The middle and

bottom text panes are exclusive GUI components needed by the Javac and Lzpr services.

Getting the client application to integrate with the set of services requires that the Jini network must be

up and running along with an associated lookup service. Since Jini is build on top of Java RMI, an RMI

daemon must be running prior to execution of the lookup service. Finally a web server must be running in

order to enable code delivery across the Jini network.

4.2 Network Monitoring Example

Figure 17 shows the conceptual architecture of the network monitoring application. Similar to the simple

editing application, the client application here interacts with services via each of their respective adapters,

each of which provide GUI components that are integrated to render the client application. This application

integrates the following services: TopService, UpTimeService and TcpDumpService. The TopService pro-

vides the top CPU processes information using the top command. The UpTimeService provides information

about how long a system has been up along with the load average using the uptime command. The Tcp-

DumpService provides a dump of the traffic on network using the tcpdump command. Each of these services

executes on different machines on a network. The network monitoring client integrates these services and

provides a unified client that then enables a user to monitor the machines.

2O

Class HelloWorld(
publlc stitt¢ votd rosin(String(] args)(

System.out.prtntln('HolloWortd')

iClass HelloWrld{
^
1 error

l
senatng..leb 'm@ml_!_4 " to lp(mlocalhest
c_nectl_ to 'l_._lks_ _, _ i
connected ti) '1_a1_'

er_r ilO_lrliO I_I711 t_t9K_ rllOX SBtVII_ v_tk _ck dl _
sendlng s_r 'AIIlpo' ts _]pC_)_hoSI_ _

error asS: 'speel qvHe for _lpO' dHS not exist on server
error ass: ' n_n-extst_nt prlnttr or yov need to run '¢he

ill i

Figure 16: Client after Integration

4.2.1 Specification

To build this application, we constructed specifications similar to those found in Figures 6- 8. In this exam-

ple, a monitoring client is connected to the TopService, UpTimeService and a TcpDumpService via connec-

tors. The monitoring client is a CallReturn component, as are the services TopService, UpTimeService and

TcpDumpService.

4.2.2 Client Application

The Client Application is connected with TopService via a cjet_totz connector to the T(3P_poz-t:. Sim-

ilarly the client application is connected to the UpTimeService via a getz_uptS_vae connector to the UP-

TfME_Port and to the TcpDumpService via a c_et_tcpdunap connector to the TCPDUEP_Po_t. The

21

Network Admin Application

Client GUI •

op " [Tcpdump Service I Uptime Service]

Figure 17: Conceptual Architecture: Network Monitoring Application

produced specification is used by the ClientGenTool to generate a client. Each of the services provide

exclusive GUI components namely "TopResults", "UpTimeResults" and "TcpDumpResults".

4.2.3 Integration and Execution

The client when executed becomes the focal point for the integration. When the client comes up on the Jini

network, it looks for the TopService, UpTimeService, TcpDumpService. As each of these services become

available on the network, the client is notified and is bound with the adapter provided by the service. The

adapter is used by the client to reach and interact with the service. The GUI components are also integrated

using the shared and exclusive GUI components that are provided by the services. Figure 18 shows how the

network monitoring client would look once all the services are available and integrated by the client.

4.3 Discussion

In the examples described above, the effort needed to generate the services was centered primarily upon

the creation of the appropriate specifications as well as the code needed to provide a GUI interface to the

service. In the client applications, the effort was likewise focused. However, as demonstrated by Figures 15

and 16 no effort (e.g., no extra code) was necessary to realize final GUI and application integration outside

of the client application specific GUI, which for the editor application amounts to just a text pane and for

the network adminstration application amounts to a frame panel.

In comparison to a "one-time" application development, the amount of code development in the service-

based approach required less effort since the adapter and glue code for service and client components is

automatically generated. In comparison to development of applications that utilize existing services, the

amount of effort required is greatly reduced since each subsequent application (assuming existence of ser-

vices) is limited to client specification and code development.

With regards to other component and middleware technologies, the approach used here has the advantage

of supporting seamless integration based on availability of services. However, along with other service-

22

S:lSam up 10:00, 1S users, lud mr_Jm 1,32, O._IS, 0.4 _-
f

.... ill I

mmmmm
r-

__ eatem up to!u, !1 .,gersw_ lud.M_ _2_, 0.SS, 0.4 ;

CPU states: 2,21V user, 3.R System, 0;0_ n!¢e, i
ram: =1_)_ tv, _0aK used, 15_ rroeo o_ sh i
_tp: I_K iv, UK used, I_W _rie !

I PTn II(;FR PItT liT _rTI r R4;_ _I4ARIr_TAT S_'Pil S_4FN TTN
8326 root IG 0 1158 11511 748 R 20.S 0.2 OsO

J

Ir00:t0:40,04.13S4 s_00,10.12S,21i1._:_ IQ.O.O_,2,41Gt41 P 35000 r_
10$;I$,4S.O41SS8 10.0.0,Z,4!II_ _i_l_Jt._bh; P 1:4S(
I05:15:4$.08641S 10.0,0,J:,330_5 • _NIX_gpl.pllS_.usweSt:on41t.d0
i05:19:49.16_t$ 20!l_111,125,251,1r;m) 1_r9;9._2,41614: , ack 4
i05:19:49.195189 phn_o_l.ghn_.us_;rdit;dg_ln) 10.0.0.2.3
OS:19:49.lSSS05 10.0.0;2,_) _.jph_,.u_vest.n_t.do
101_19:49._30t4 iI_mcpo=1,phflx.__doml_n > t0.0.0.2.3
r05:t0:40._44C_ t0.0.0.2.3:0_G _ _t,_n#.vm*est.net.do
05:t9:49,210015 vfp _1'1._,_ I0.0,0,t2_ kvll 10.0.0. t
05:19:'t_!.3134)'$ phnxpo_1.pflflx.us_est.ne_.do_ln _ lO.O.o.z.3

Figure 18: Network Monitoring Application

based technologies including web services, has the disadvantage of assuming loose coupling, thus relying

heavily upon a priori knowledge regarding service behavior and data integration concerns.

5 Related Work

Recently, the use of WebServices [Oellermann, Jr., 2001] has gained attention with vendors releasing web-

services toolkits that allow for building and using webservices. Webservices are based on the SOAP and

XML [Seely and Sharkey, 2001] protocols over transport layers such as HTTP and HTTPS. Our approach to

service integration goes beyond what the webservices paradigm provides. It does not talk about how to use

the applications but rather what these services provide and where they reside. We take a step further in that

we also try to define how these services need to be used with a larger context of several kinds of services.

We make use of the ability to transport code provided by the Jini technology.

An interesting area of research work namely Semantic Web [Semantic Web, 2002] has also started to

gain a lot of momentum. The Sematic Web is an extenstion to the existing web as it exists today, in that it

allows the information to be given a well-defined meaning, allowing computers and people to work together.

23

TheDAML[DAML,2002]isanagentmarkuplanguagethatisafirststepintryingtospecifyinformation

thatcanbeinterpretedbycomputersasopposedtohumans.

JacobsenandKramer[JacobsenandKramer,1998]describeanapproachfor synthesizingwrappers

basedon thespecificationof a modifiedCORBAIDL description.In theirapproach,theyaddressthe

problemofobjectsynchronizationwithinthecontextof theCORBAstandardanddefineatechniquebased

ontheapplicationof theadapterdesignpattern.In manyways,JacobsenandKramer'sapproachissimilar

totheonedescribedinthispaper.Wearecurrentlyinterestedinsoftwareatahigherlevelofgranularitythan

theonesoftenprovidedviaORB-basedinterfaces,thusourapproachhassomepotentialforfull automation.

However,asweincreaseourscopeto includeamoregeneralclassofcomponent,wemustaddresssimilar

concerns.

Thakkaretal.describetheAriadneservice-specificationlanguageandprocessandtheTheseusservice-

executionplatform[Thakkaraetal.,2002].Ariadneadoptsarelational-databaseviewofexistingresources

andsupportstheconstructionof wrapperstreatingtheseresourcesasrelationaldatabases.Resourcesspeci-

fiedinAriadnecanbecombinedintermsofdata-flowspecificationandthesecompositionsareexecutedat

run-timebytheirTheseusenvironment.Theylookatdataintegrationasopposedtobehavioralintegration.

Sullivanetal. lookat systematicreuseof large-scalesoftwarecomponentsviastaticcomponentinte-

gration]Sullivanetal.,1997].Thatis, theyuseanOLE-basedapproachfor componentintegration.To

demonstratetheuseof theirscheme,theydevelopedasafetyanalysistoolthatintegratesapplicationcom-

ponentssuchasVisioandWord.Inourapproachweuseadynamicapproachforcomponentintegrationand

thus,canutilizeawidevarietyof componentswhoseinterfacesarediscoveredatrun-time.

CyberDesk[Deyetal.,1998]isacomponent-basedframeworkwritteninJavathatsupportsautomatic

integrationofdesktopandnetworkservices.Thisframeworkis flexibleandcanbeeasilycustomizedand

extended.Thecomponentsin thisframeworktreatalldatauniformlyregardlessof whetherthedatacame

fromalocallyrunningserviceor theWorldWideWeb.Thegoalofthisframeworkis toprovideubiquitous

accessto services.Thisapproachissimilartoourproposedapproachin thattheyuseadynamicmapping

facilitytosupportrun-timediscoveryof interfaces.

Finally,Grechaniketal.describewaystointegrateandreuseGUIdrivenapplications[Grechaniketal.,2002]

bywrappingapplicationsasobjectsandaccessingthemprogramaticallyviaanAPI.Theyachievethisusing

interceptorsthatcaptureGUIeventswhichcanbelaterreplayed.In comparison,ourapproachachieves

GUIintegrationbyrequiringthatservicesonaJininetworkprovideaGUIviaanadapterandproxy.The

GUIintegrationisrealizedbyusingJini'sbuilt-infacilityfortransportingdirecthandlestotheproxiesand

integratingthemdirectlyintoclientapplicationsatrun-time.

24

6 Conclusions and Future Investigations

The web-based services paradigm has gained attention recently with the development of technologies such

as SOAP [Seely and Sharkey, 2001]. The benefits of such technologies has obvious advantages such as

application sharing, reuse, and inter-operability between organizations. Services extend these benefits by

providing facilities for on-the-fly integration and component introspection. In this paper, we described an

approach for addressing component integration via the use of services in the context of Jini Interconnection

Technology. Specifically, the approach utilizes synthesis to generate code necessary to realize component

integration as well as GUI integration. To facilitate integration, the ACME ADL is used to specify both

services and target applications, and is used a medium for performing service compatibility checking.

We are currently developing an environment that will assist in the creation of applications within the

service-based paradigm and will support service browsing to facilitate application design [Mudiam et al., 2002].

In addition, we are investigating approaches for allowing services to collaborate beyond the scope of a client

application in order to create federated groups of services. Furthermore, we are developing technologies

similar to the ones described in this paper in order to support service-based application within the .NET and

web service frameworks.

References

[Acme Lib, 1997] Acme Lib (1997). The acme tool developer's library (acmelib).

http://www.cs.cmu.edu/,_acme/acme_downloads.html.

[Acme Studio, 2002] Acme Studio (2002). Acmestudio: A graphical design environment for acme.

http://www.cs.cmu.edu/_acme/AcmeStudio/AcmeStudio.html.

[Allen and Garlan, 1997] Allen, R. and Garlan, D. (1997). A Formal Basis for Architectural Connection.

ACM Transactions on Software Engineering and Methodology.

[Chikofsky and Cross, 1990] Chikofsky, E. J. and Cross, J. H. (1990). Reverse Engineering and Design

Recovery: A Taxonomy. IEEE Software, 7(1): 13-17.

[Cimitile et al., 1998] Cimitile, A., DeCarlini, U., and DeLucia, A. (1998). Incremental migration strate-

gies: Data flow analysis for wrapping. In Working Conference on Reverse Engineering, pages 59-68.

IEEE, IEEE CS Press.

[DAML, 2002] DAML (2002). Daml-based web-services description language. [Online] Available

http://www.daml.org/services.

[Dey et al., 1998] Dey, A. K., Abowd, G.,, and Wood, A. (1998). CyberDesk: A Framework for Providing

Self-Integrating Context-aware Services. Knowledge-Based Systems, 11 (1):3-13.

[Fremantle et al., 2002] Fremantle, E, Weerawarana, S., and Khalaf, R. (2002). Enterprise services. Com-

munications of the ACM, 45(10):77-80.

25

[Gammaetal.,1995]Gamma,E.,Helm,R.,Johnson,R.,andVlissides,J.(1995).Design Patterns: Ele-

ments of Reusable Object-Oriented Software. Addison Wesley Longman.

[Gannod et al., 2000] Gannod, G. C., Mudiam, S. V., and Lindquist, T. E. (2000). An Architecture-Based

Approach for Synthesizing and Integrating Adapters for Legacy Software. In Proc. of the 7th Working

Conference on Reverse Engineering, pages 128-137. IEEE.

[Garlan et al., 1997] Garlan, D., Monroe, R. T., and Wile, D. (1997). Acme: An Architecture Description

Interchange Language. In Proceedings of CASCON'97, pages 169-183.

[Grechanik et al., 2002] Grechanik, M., Batory, D., and Perry, D. E. (2002). Integrating and reusing gui-

driven applications. In Proc. of the h_tl Conf on Software Reuse (LNCS 2319), pages 1-16. Springer-

Verlag.

[Jacobsen and Kramer, 1998] Jacobsen, H.-A. and Kramer, B. J. (1998). A design pattern based approach

to generating synchronization adaptors from annotated idl. In Proceedings of the Automated Software

Engineering Conference, pages 63-72. IEEE, IEEE CS Press.

[Luckham and Vera, 1995] Luckham, D. and Vera, J. (1995). An Event-Based Architecture Definition Lan-

guage. IEEE Transactions on Software Engineering, 21 (9):717-734.

[Medvidovic and Taylor, 1997] Medvidovic, N. and Taylor, R. N. (1997). Exploiting architectural style to

develop a family of applications, lEE Proc. in Software Engineering, 144(5-6):237-248.

[Mudiam et al., 2002] Mudiam, S. V., Gannod, G. C., and Lindquist, T. E. (2002). A Novel Service-Based

Paradigm for Dynamic Component integration. In Proc. of the AAAI-02 Workshop on Intelligent Service

Integration, Edmonton, Alberta, Canada. American Association for Artificial Intelligence.

[Oellermann, Jr., 2001] Oellermann, Jr., W. L. (October 2001). Architect#zg Web Services. a! Press.

[Richards, 1999] Richards, W. K. (1999). Core Jini. Prentice-Hall.

[Seely and Sharkey, 2001] Seely, S. and Sharkey, K. (August 2001). SOAP: Cross Platforn2 Web Services

Development Using XML. Prentice Hail.

[Semantic Web, 2002] Semantic Web (2002). The semantic web. [Online] Available

http://www.w3.org/2001/sw/.

[Shaw and Garlan, 1996] Shaw, M. and Garlan, D. (1996). Software Architectures: Perspectives on an

Emerging Discipline. Prentice Hall.

[Sneed, 1996] Sneed, H. M. (1996). Encapsulating legacy software for use in client/server systems. In

Working Conference on Reverse Engineering, pages 104-119. IEEE, IEEE CS Press.

[Stal, 2002] Stal, M. (2002). Web services: beyond component-based computing. Communications of the

A CM, 45(10) :71-76.

[Sullivan et al., 1997] Sullivan, K. J., Cockrell, J., Zhang, S., and Coppit, D. (1997). Package Oriented

Programming of Engineering Tools. In Proceedings of the bzternational Conference on Software Engi-

neering, pages 616-617.

[Thakkara et al., 2002] Thakkara, S., Knoblock, C. A., Ambite, J.-L., and Shahabi, C. (2002). Dynamically

composing web services from on-line sources. In Proc. of the AAAI-02 Workshop on Intelligent Service

Integration, Edmonton, Alberta, Canada, pages 1-7. American Association for Artificial Intelligence.

26

